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A Study of the CTHA Based on Analytical Models
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Abstract—The first electromagnetic analysis of the
contra-wound toroidal helix antenna (CTHA) is presented.
This very-low-profile antenna is seen to have characteristics
derivable from a transmission line with a standing current wave
and an array of small loops. Formulas for the far-field radiation
and efficiency are given. These are used, in conjunction with a
numerical model, to develop some trends relating performance
and design parameters.

Index Terms—Helical antennas.

I. INTRODUCTION

A. Background and Motivation

T HE contra-wound toroidal helix antenna (CTHA) is
formed by placing two spiral windings on a toroid core,

as shown in Fig. 1. It is generally built as an electrically-small,
very-low-profile antenna. It has the interesting property that it
can be designed to have nearly isotropic radiated power density.
It was invented at West Virginia University [1], [2] but has
not received a fundamental treatment through electromagnetic
theory before now. The analysis reported in this paper was
done in 1996 [3] and deals only with the case of an air core.
The purpose of this work is to provide as much insight as
possible from an analytic point of view, both for its own sake
and to serve as a reference for comparison with numerical
and experimental studies. The most desirable situation is to
have results that agree from analysis, simulation, and physical
experiment, but each area has its limitations and hazards so
that comparisons should be made and work revisited in each
approach until the differences are either reconciled or at least
understood.

B. Basic Geometry and Character

It is helpful to think of the windings in several ways. The first
way begins with the upper source terminal in Fig. 1. Start with
the wire going up and to the right, follow it around, and see that
it comes back to the source from the lower left. Likewise, again
starting from the upper source terminal, follow the wire that
goes up and to the left, and see that it comes back to the source
from the lower right. The wires are insulated, so that their only
conductive connections are at the source terminals. Then each
winding looks like a conventional helix whose axis has been
bent into a loop, and the winding terminates electrically at the
source instead of in an open circuit as in the case of a conven-
tional helix. A straight-axis electrically-small helix is usually
viewed as radiating as if it were made up of a sequence of alter-
nating small loops and small linear current elements (dipoles)
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Fig. 1. Perspective view of a CTHA, with an exploded view of a feedpoint.

[4, p. 334ff]. The linear current elements radiate waves whose
electric vector is parallel to the helix axis, while the loops radiate
waves whose electric vector is parallel to the plane of the loop,
perpendicular to the helix axis. Wrapping a helix on a toroid in-
stead of a cylinder means that the linear current elements will be
formed in a single larger loop and this loop will radiate a wave
with its electric vector parallel to the plane of the toroid (hori-
zontal for this discussion). The effect of the second winding on
the CTHA is to produce a second wave, from the axial com-
ponents of current, whose horizontal electric field is opposite
to that of the first winding, producing no net horizontal electric
field. This effect can be seen in Fig. 2, which shows the refer-
ence directions for currents in the two windings. Looking at any
two adjacent wires on the top, one can see that their resultant
is a current that passes straight across the top, and likewise, the
currents passing underneath have a resultant lying on a radius
line of the torus. Except for distortions of the winding, there
would be no equivalent current parallel to the toroid centerline
(the bent helix winding axis), and therefore novector in the
plane of the toroid. One can also see that under each half-turn
of one winding, there is a half-turn of the other winding. These
two half-turns have the same current in opposite directions so
that they are equivalent to a single complete vertical loop with
an approximately elliptic shape. From this, we conclude that an
adequate way of treating the CTHA for finding its radiation field
is to treat each pair of half-turns as a single-turn vertical loop of
elliptical shape with a space orientation determined by its posi-
tion on the toroid.

A second way of viewing the windings is to see that both of
the wires leaving the source to the right form a transmission
line, something like a twisted-pair phone line. This line goes
around and connects, in a cross-tied manner, to itself, so that
the source both drives and terminates the line. However, from
the previous figures, it is clear that the current distribution has
symmetry about the source, and in fact about a diameter line

0018–926X/01$10.00 © 2001 IEEE



MIRON: A STUDY OF THE CTHA BASED ON ANALYTICAL MODELS 1131

Fig. 2. Top view of a CTHA winding. The arrows show reference current
directions. Solid arrows and lines are on the top half, broken arrows and lines
are on the bottom half. Observe that each top half-turn of one winding lies over
a bottom half-turn of the other winding, and the currents in each such pair are
equal and opposite. This makes each such pair an equivalent loop with current
circulating around the core.

of the antenna passing through the source to the opposite point
on the line, halfway around the winding. Therefore, it is more
useful to think of the windings as two transmission lines driven
in parallel at the source, going left and right around the toroid,
and terminating at a cross-tie on the far side. Because of the
cross-tie, the lines short each other. A transmission line with a
short circuit termination has a standing-wave current distribu-
tion on it. If it weren’t for losses, the total current would be a
sine function of position on the line. Also, such a structure has
resonances. The input impedance must be inductive at frequen-
cies below the first resonance, just as in a conventional shorted
line. The first resonance will be a high-impedance transition be-
tween inductive and capacitive reactance, the second resonance
will be a low-impedance transition from capacitive back to in-
ductive reactance, and so on.

It is not possible to obtain analytical relations between the
CTHA geometry and the transmission-line parameters. An ap-
proach that allows a qualitative understanding of the impedance
behavior is to view the windings as a periodic structure, with
each loop having some inductance, wire resistance, shunt capac-
itance (mostly from the wire crossings), and mutual inductance
with the loops on either side. A circuit analysis based on these
ideas is given in [3] but is omitted in this paper since it has no
bearing on the antenna performance treatment.

C. Analysis Assumptions and Approaches

The ideas in the preceding paragraphs are the basis for the
analysis given in the following sections. Each radiating loop is
assumed to have a constant current whose value is a sample
of the sine distribution. Expressions for the radiated fields are

derived starting from the known fields of a small horizontal loop
[4].

While the basic intention of this paper is to present the ana-
lytic results, a sampling of results for antennas over a range of
shapes is given. A numerical modeling program1 [5] has been
used to find a set of geometries that resonate first at 30 MHz.
Free space has been assumed as the antenna environment.

II. EQUATIONS FROMGEOMETRY

A. The Idealized Winding

A mathematically idealized, or simplified, version of the
winding is one that has no wire thickness so that the windings
lie in the surface of the core. On this basis, Fig. 3 shows the
coordinate variables for the core.is the core major radius and

is the core cross section, or minor, radius. A point on the core
surface is defined by cylindrical coordinates . In order
to be able to generate a wire list for NEC [5], to express the
winding length, and to reduce the expressions to a function
of a single variable, it is convenient to find the coordinates in
rectangular form and then express them as functions of one
of the angle variables. It is clear from Figs. 1 and 2 that each
point in a winding has a unique value of. If is allowed to
have values up to , where is the number of turns in a
winding, then each point in the winding also has a unique value
in . Indeed

(1)

From Fig. 3

giving

(2)

(3)

(4)

These equations apply to the right winding. The left winding
has the same description, except thatgoes from to . This
means , which changes the sign ofin (3).

It would be extremely useful to have an expression for the
total winding length. Let this be . The incremental length is
given by each of the following expressions:

From either expression, the previous equations can be used to
reduce to a function of alone, so that

(5)

1The version used here is version 2 of the source code, compiled for double-
precision arithmetic.
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Fig. 3. Coordinates for the CTHA core.

There is no closed-form solution to this integral. It has to be
approximated numerically.

B. Mathematically Approximating a Real Winding

Fig. 4 shows some geometry changes to accommodate real
wires. Not only does the wire radius add to, but the wires
overlap on alternating sides along the winding. The overlap is
modeled by adding times a function of which is 1 on one
side of the core and goes down to zero on the other. The equiv-
alent radius chosen is

(6)

for the right winding and

(7)

for the left winding.
It is useful for some purposes to have an average value for

(8)

The overall diameter is an important issue in antenna design.
Counting out from the center and then doubling, one finds

(9)

The minimum is the condition reached when the turn
spacing on the inside of the core is equal to the minimum

Fig. 4. Core with wires on it.S is a minimum wire spacing.

allowed wire spacing . For turns, this gives an inner cir-
cumference of , so

(10)

Eliminating between (9) and (10) and solving for gives
the minimum for a specified and

(11)

C. The Elliptical Loop

An ellipse of minor axis and major axis has, by direct
integration of the appropriate formula

(12)

The position and orientation of each loop has to be specified for
the field calculations. We also need the loop major axis width.
Fig. 5 is a sketch of the top view of two loops (one turn of each
winding) with dimensional and angle definitions. Since there are

turns in a winding and one turn from each winding makes two
loops, there are loops in each transmission line. The angle in
the – plane subtended by each loop, and the center-to-center
angle, is . The center of the first loop is half this angle
off the axis, so the center for theth loop is at

(13)

The loop is rotated off the radius line through its center by an
angle

(14)

where is found from the trigonometry of the figure as follows:

(15)
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Fig. 5. Geometry of loop orientation and size.

The angle of the loop with respect to a line through its center
parallel to the -axis is

(16)

III. T HE RADIATED FIELD

The fields radiated by a small loop lying in the– plane
are given in many books on electromagnetics and antennas. In
this section, we take this result and transform it to a vertical
loop at an angle from the-axis and then use the parallel-ray
approximation to get the far field for the loop displaced from the
origin of coordinates. Since the antenna has left–right symmetry
about the -axis, the fields for corresponding loops can be added
to reduce the field summing to terms.

The field for a small loop lying in the – plane is

(17)

in which is the wavenumber,
and are the spherical coordinates for the field point, andis
a unit vector.

The key to getting to the final field value for the rotated ver-
tical loop is to get the components in rectangular coordinates. It
is useful to use , the cylindrical radius, as well

The angle-dependent terms in the field expression are then

This expression only involves the rectangular coordinate values
and the radius. Relabeling the axes by a right-handed rotation,

, converts the loop to vertical position in
the – plane and gives the angle-dependent terms as

Define

(18)

Then, for the loop in the– plane

Next we need to shift the loop off the-axis by an angle .
This shifts the horizontal axis of the loop from the-axis to
an axis. The field components are then converted toand
expressions in the new orientation

The conversions are

Putting these into the expression gives

Finally, going back to the observation point angles

(19)

(20)

(21)

These are the field components for a single vertical loop cen-
tered at the origin and turned by an angle from the axis.
The reference current direction was originallyand is now .

Now we must use the parallel-ray approximation to find the
space phase shift due to the fact that each loop is centered at

. The projection of the source point onto the
line from the origin to the field point gives

(22)

Since the current in each loop and the loop’s orientation and
position are functions of its index, it is necessary to subscript
those items that depend on. Taking the th loop from the right
side and the th loop from the left side, which has and

, and pairing them

(23)
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(24)

(25)

Next, we sum the field components from the loop pairs around
the antenna. To simplify the notation, define

(26)

(27)

(28)

in which loop area is the th loop current.
has the basic amplitude terms, with the propagation factor,

, dropped out. Continuing with definitions

(29)

The total field, in rectangular components, is

(30)

(31)

(32)

The final step is to convert to spherical components. By con-
structing the appropriate triangles, one can find the following
conversion formulas:

(33)

Applying these results to (30)–(32), we have

(34)

(35)

(36)

IV. NUMERICAL RESULTS

A. Definitions

Programs have been written which embody all the equations
in the previous sections. The results given in the following sub-
section assume a transmission line current sampled at each loop
as

(37)

, or for first, second, or third resonance. For directivity
and gain, the -field is calculated at the centers of 2steps

over a quarter sphere. Once the-field is computed, the power
density is computed from

(38)

The total radiated power is

(39)

The loss power is calculated from the loop currents and the re-
sistance per turn, , as

(40)

The directivity is

(41)

The efficiency and gain are

and (42)

B. Shapes and Performance

The antenna patterns have simple shapes up through third
resonance. They are determined by the standing-wave current
distribution and the space-phase shift across the antenna. At
all frequencies, the current distribution has a maximum at the
shorted connection of the two transmission lines, opposite the
feed point. Below first resonance, the azimuth pattern is the
figure-8 of the vertical loop. As first resonance is approached,
the notches are filled in and become dips. This is because the
space phase shift between waves from the turns with the max-
imum current, at the rear of the antenna, and the waves from
the turns at the sides of the antenna is sufficient to prevent can-
cellation, and the current at the feed point approaches a min-
imum. Above first resonance, the current minimum splits into
two, one on each side of the feedpoint. As second resonance is
approached, these minima go to midway around, to theaxis,
and a second maximum is at the feedpoint. This distribution
causes cancellation along the-axis which produces the figure-8
pattern again. As frequency is increased above second resonance
the current maximum at the feedpoint splits and three current
maxima are formed. At third resonance, there are three maxima
and three minima evenly spaced around the antenna. Again, be-
cause of current sign changes and space phase differences, the
notches become dips. If isotropic patterns are the goal, then op-
eration near first or third resonance is necessary.

The following results are grouped first by the number of turns,
4, 6, 8, or 10, in each winding. Within each group, the ratio
of major to minor torus radii, , is held constant at each of
several values, and then the radii searched until resonance at
30 MHz is achieved. This search is done using a double-preci-
sion version of NEC2 [5]. Two copper conductor sizes are used,
0.5-in and 0.25-in outer diameter. The larger size is used in the 4-
and 6-turn groups, and the smaller size is used in another 6-turn
and the remaining groups. Efficiency is an important issue for
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TABLE I
GEOMETRIESTHAT HAVE FIRST RESONANCE AT30 MHz, FOUND USING NEC2D.� AND � ARE EFFICIENCIES ATFIRST AND THIRD RESONANCES, f IS THIRD

RESONANCEFREQUENCY IN MHz. THE ASTERISK, �, INDICATES THE ENTRY WITH THE LARGESTMINOR RADIUS IN EACH GROUP

the CTHA, just as it is for a single small loop, so the conductor
is chosen as large as possible for the turn size used.

The performance measures presented are efficiency, dip ratio,
directivity, and gain. The dip ratio is . Table I shows
the geometries and efficiencies found using NEC2D. Also in-
cluded in Table I is a labeling code to identify the antennas in
the following tables. The code has the form in which
is the number of turns per winding,is , and is either
or for 0.5-in– or 0.25-in—diameter copper. Efficiency can
be calculated in two ways using NEC2D. The input file was set
to give both. The program will calculate the input power from
the input current and applied voltage, , and the loss power,

, by summing over all the wire segments. The radi-
ated power is found as the difference between these powers and
the efficiency reported on this basis. The second method is to
have the program calculate the fields over a quarter sphere and
report the average gain. If perfect accuracy is present, these two
numbers should be the same. For the CTHA this is not the case,
especially at and below first resonance. The lower of the two
figures is given in Table I.

The following tables give performance results from the ana-
lytically derived field formulas for the above shapes. The width
and height of each design is also included so that the reader can
readily identify the connections between shape and the various
performance criteria.

V. DISCUSSION

The first question that needs to be addressed is how good is
the model? The general properties of the patterns given by the
analytical formulas and by the numerical method are the same.
However, the numerical method shows more horizontally polar-

ized radiation at low elevations. This difference is due to the as-
sumption that the loops are completely vertical, which they are
not. The efficiencies given by the formulas are in the range of
those from NEC2D. At first resonance, the two ways of calcu-
lating efficiency in NEC2D have a ratio of about 1.5:1, so that
the validity of either is doubtful. At least the formulas do not
overestimate efficiency.

There are several things to be said about the effect of shape
parameters on performance. The most obvious is that the single
most important factor for determining efficiency is the loop ra-
dius . As with ordinary single-turn and cylindrical multi-turn
small loops, this radius determines the space-phase difference
across the loop and, therefore, the degree to which fields from
opposite current-carrying segments do not cancel. The highest
efficiency goes with the fewest turns. Increasing the number of
turns for a given design frequency means that the phase shift per
turn in the current wave must be reduced, which in turn forces
a smaller turn.

The effect of is different on different parameters. For a
fixed number of turns there is a value either side of which pro-
duces less efficiency. This value increases with the number of
turns. The dip ratio and directivity also vary with . Dip ratio
magnitude appears to decrease with increasingat first reso-
nance. At third resonance, dip ratio magnitude has a minimum
at larger values of than the efficiency maximum. One might
expect that directivity would decrease with dip magnitude. This
is true at first resonance (Table II), but at third resonance (Table
III) the opposite seems to happen.

The sizes in this sampling of designs range from about
m for the most efficient 4-turn design down to m
for the smallest and least efficient 10-turn design. The wave-
lengths at first and third resonances are about 10 and 3.3 m.
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TABLE II
PERFORMANCE ATFIRST RESONANCE, 30 MHz,� = 10 m

TABLE III
PERFORMANCE ATTHIRD RESONANCE, � IS BETWEEN 3 AND 3.37 m

Many different applications are possible depending on which
characteristics are most important. For example, if it is impor-
tant to have a low-profile low-directivity surface-mounted an-
tenna, the 10-turn third-resonance design has a reasonable effi-
ciency at a height of less than a 30th of a wavelength. Further-
more, it could be operated at the inductive side of resonance,
so that it could be tuned with a high-efficiency capacitor, unlike
the short whip which requires an inherently inefficient coil for
tuning.

An application requiring minimum dip ratio would need more
study. The sampling of values used here is too coarse. It may
very well be that a dip magnitude minimum exists in the third
resonance designs, and it may be that zero dip is possible at
either resonance. Software to address these matters in a timely
manner hasn’t been written yet.

VI. OTHER ISSUES ANDPOSSIBILITIES

The fact that a standard numerical method and the analytical
formulas given in this paper agree qualitatively makes them mu-

tually validating to that extent. Carefully controlled experiments
based on these designs needs to be performed to provide the
third leg of validation.

NEC, in its various versions, is a general-purpose antenna
code designed for moderate-sized antennas and large structures.
A code with limited objectives can be written in a more spe-
cialized way to give greater accuracy. For example, a code, still
in development, which uses the Fourier Series for both basis
and weighting functions has been written which produces better
than 90% agreement between input power calculated from input
voltage and current, and input power as the sum of loss and ra-
diated powers.

An important practical problem with the CTHA is its
high and very reactive impedance near the odd-numbered
resonances. Advantage can be taken of its transmission-line
aspect by treating the connections opposite the feed port as
a second port. Open-circuiting the cross-tie forces the cur-
rent maximum at first and third resonance to be at the input
terminals, without changing the patterns. This change makes
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these resonances low-impedance which may make them easier
to match. Lumped-element loading at the second port, and at
the wire crossings, may also provide some useful effects on
both impedance and pattern bandwidth. A casual numerical
experiment in which a smaller CTHA was connected to port 2
of a 200-MHz first-resonance design showed improved pattern
uniformity over an octave.

All the work reported here is for a CTHA with an air core.
Most of the experimental work has been done on designs with
dielectric cores and has been fraught with problems. Analyt-
ical treatment of the dielectric core case is currently beyond
this author’s capability. The preliminary code mentioned above
is aimed at this case. The code is currently much slower than
it needs to be and strains the memory capacities of computers
available to this investigator. However, some interesting corre-
lations have been found between its numerical results and phys-
ical experiments. With a dielectric core present, the resonant
frequencies decrease, as expected, the efficiency increases, the
horizontally polarized field increases, and the azimuth pattern
skews. The latter effects can be understood by realizing that the
dielectric is driven by the near field of the wires, so that it is
also radiating. The atomic dipoles near a wire will have their
axes perpendicular to the wire and radiate fields perpendicular
to those of the wire. The actual geometric situation is very com-
plex, but this notion may explain the large amount of horizon-
tally polarized radiation at low elevation when a dielectric core
is present.

In conclusion, the analytical approach has led to some useful
formulas and a perspective that points the way to further devel-
opment of this very interesting antenna type.
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